Call For Abstract

Session 1Organic and Inorganic Chemistry

The word "organic" means something very different in chemistry than it does when you're talking about produce and food. Organic compounds and inorganic compounds form the basis of chemistry. The primary difference between organic compounds and inorganic compounds is that organic compounds always contain carbon while most inorganic compounds do not contain carbon. Also, nearly all organic compounds contain carbon-hydrogen or C-H bonds. Organic and inorganic chemistry are two of the main disciplines of chemistry. An organic chemist studies organic molecules and reactions, while an inorganic chemistry focuses on inorganic reactions.

Session 2Analytical Chemistry

Analytical chemistry is often described as the area of chemistry responsible for characterizing the composition of matter, both qualitatively (Is there any lead in this sample?) and quantitatively (How much lead is in this sample?). Analytical chemistry is not a separate branch of chemistry, but simply the application of chemical knowledge.

Session 3Green Chemistry

Green chemistry is the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Green chemistry applies across the life cycle of a chemical product, including its design, manufacture, use, and ultimate disposal. Green chemistry is also known as sustainable chemistry.

Session 4Biochemistry

Biochemistry is the branch of science that explores the chemical processes within and related to living organisms. It is a laboratory based science that brings together biology and chemistry. By using chemical knowledge and techniques, biochemists can understand and solve biological problems. Biochemistry allows us to understand how chemical processes such as respiration, produces life functions in all living organisms.

Session 5Environmental Chemistry

Environmental chemistry is the study of chemical processes occurring in the environment which are impacted by humankind's activities. These impacts may be felt on a local scale, through the presence of urban air pollutants or toxic substances arising from a chemical waste site, or on a global scale, through depletion of stratospheric ozone or global warming.

Session 6Medicinal Chemistry

Medicinal chemistry deals with the design, optimization and development of chemical compounds for use as drugs. It is inherently a multidisciplinary topic — beginning with the synthesis of potential drugs followed by studies investigating their interactions with biological targets to understand the medicinal effects of the drug, its metabolism and side-effects.

Session 7Materials Chemistry

Materials chemistry provides the link between atomic, molecular and supramolecular behaviour and the useful properties of a material. It lies at the core of many chemical-using industries. A wide range of materials, includes organic materials and polymers, nanomaterials and nanoporous materials.

Session 8Petroleum Engineering

Petrochemistry is the branch of chemistry defines refining and processing of chemistry concerned with crude oil and fossil fuel. Examples of petrochemicals includes: ammonia, acetylene, benzene, and polystyrene. Petrochemistry covers the areas of good style of materials like plastics, explosives, fertilizers, and artificial fibers.

Session 9Nuclear Chemistry

Nuclear chemistry is the subdiscipline of chemistry that is concerned with changes in the nucleus of elements. These changes are the source of radioactivity and nuclear power. Since radioactivity is associated with nuclear power generation, the concomitant disposal of radioactive waste, and some medical procedures, everyone should have a fundamental understanding of radioactivity and nuclear.

Session 10Physical and Theoretical Chemistry

Physical Chemistry is the application of physical principles and measurements to understand the properties of matter, as well as for the development of new technologies for the environment, energy and medicine. Theoretical and computational tools are to provide atomic-level understanding for applications such as: nanodevices for bio-detection and receptors, interfacial chemistry of catalysis and implant

Session 11Biological Chemistry

Biological chemistry, is the study of chemical processes within and relating to living organisms. Biological chemistry is closely related to molecular biology, the study of the molecular mechanisms by which genetic information encoded in DNA is able to result in the processes of life.

Session 12Geochemistry

Geochemistry is the branch of Earth Science that applies chemical principles to deepen an understanding of the Earth system and systems of other planets. Geochemists consider Earth composed of discrete spheres — rocks, fluids, gases and biology — that exchange matter and energy over a range of time scales.

Session 13Quantum Chemistry

Quantum chemistry, a sub-discipline of chemistry that focuses on the properties and behavior of subatomic particles, especially electrons. Quantum chemistry applies quantum mechanics to the theoretical study of chemical systems. It aims, in principle, to solve the Schrödinger equation for the system under scrutiny; however, its complexity for all but the simplest of atoms or molecules requires simplifying assumptions and approximations, creating a trade-off between accuracy and computational cost.

Session 14Polymer Chemistry

Polymer chemistry is a chemistry subdiscipline that deals with the structures, chemical synthesis and properties of polymers, primarily synthetic polymers such as plastics and elastomers. Polymer chemistry is related to the broader field of polymer science, which also encompasses polymer physics and polymer engineering.

Session 15Clinical Chemistry

Clinical Chemistry also known as chemical pathology, clinical biochemistry or medical biochemistry is the area of chemistry that is generally concerned with analysis of bodily fluids for diagnostic and therapeutic purposes. It is an applied form of biochemistry. The discipline originated with the use of simple chemical reaction tests for various components of blood and urine.

Session 16Electrochemistry

Electrochemistry is the study of chemical processes that cause electrons to move. This movement of electrons is called electricity, which can be generated by movements of electrons from one element to another in a reaction known as an oxidation-reduction ("redox") reaction.

Session 17Synthetic Chemistry

Synthetic Chemistry is the study of the connection between structure and reactivity of organic molecules. Synthetic chemistry is most frequently used in the preparation of mono-functional and di-functional compounds from the smaller entities. It is widely used for the production of organic compounds that are having commercial interest.

Session 18Natural Product Chemistry

Natural Products Chemistry deals with chemical compounds found in nature that usually has a pharmacological or biological activity for use in pharmaceutical drug discovery and drug design. Natural Products Chemistry is related to the study of chemistry and biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.

Session 19Agricultural and Food Chemistry

Agricultural and food chemistry deals with the chemistry and biochemistry of agriculture and food with a focus on original research representing complete studies, rather than incremental studies it covers the chemistry of pesticides, veterinary drugs fertilizers, and other agrochemicals, together with their metabolism, toxicology, and environmental fate.

Session 20Nanochemistry

Nano chemistry is the study of atom by atom or extremely small things in chemistry, physics, biology, materials science, and engineering and its applications. Nano chemistry is an advance area of chemistry for the study of nanoparticles and their compounds reactions and the production.

Session 21Industrial Chemistry

Industrial chemistry is concerned with using chemical and physical processes to transform raw materials into products that are beneficial to humanity. This includes the manufacture of basic chemicals to produce products for various industries.

Session 22Chemical Engineering

Chemical engineering is a branch of engineering that uses principles of chemistry, physics, mathematics, and economics to efficiently use, produce, transform, and transport chemicals, materials, and energy. A chemical engineer designs large-scale processes that convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products.

Session 23Heat Transfer Research Opportunities

Heat transfer research covers the entire subjects of the heat transfer which involves the different heat transfer operations like conduction, convection, radiation and it also concentrates on phase changing operations like boiling, solidification. Heat transfer is a disciplinary branch of thermal chemistry which deals with conversion and exchange of thermal energy between physical systems.

Session 24Chemical Engineering Thermodynamics

This session focuses on modern thermodynamics or thermodynamics which is the study of heat and temperature and their relationship with the energy and work. Thermodynamics is branch of physics. The main application of thermodynamics was mechanical heat engines later it was extended chemical compounds and chemical reactions which is studied under chemical engineering thermodynamics.

Session 25Chemical Reaction Engineering

Chemical reaction engineering involves organizing plant processes and conditions to ensure optimal plant operation to construct models for reactor process design and analysis. Many applications of chemical engineeringinvolved in the day to day life like rubber, plastic, cement, sugar, ceramic etc.

Session 26Separation Techniques

A Separation technique is a process to achieve any mass transfer occurrence that converts a mixture of substances into two or more individual product mixtures. Separations may differ in chemical properties or physical properties such as size, shape, mass, density, between the constituents of a mixture. They are often categorized according to the particular differences they use to achieve separation.

Session 27Fluid Dynamics

Fluid dynamics is a sub-discipline of fluid mechanics that deals with fluid flow—the science of fluids (liquids and gases) in motion. It has several subdisciplines itself, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion).

Session 28Biologically Engineered Systems

Biologically Engineered Systems is the application of engineering principles and practices to the purposeful manipulation of molecules of biological origin. The study to manufacture new molecules to create products and processes that don't already exist in the natural world.

Session 29 Biocatalysis and Biotransformation

The impact of bio catalysis in the future will be the enlarge of ability to use enzymes to catalyze chemical reactions in industrial processes, including the manufacture of drug material, flavors, fragrances, electronic chemicals, polymers—chemicals that literally impact almost every facet of your life.

Session 30Catalysis and Applications

Catalysts are substances which, when added to a response, increment the rate of reaction by furnishing other response pathway with a lower activation energy(Ea). They do this by advancing legitimate introduction between responding particles. In natural chemistry, catalysts are known as chemicals.